Switchgrass PvDREB1C plays opposite roles in plant cold and salt tolerance in transgenic tobacco

نویسندگان

  • Wuwu Wen
  • Zheni Xie
  • Guohui Yu
  • Chengliang Zhao
  • Jing Zhang
  • Linkai Huang
  • Bin Xu
  • Bingru Huang
چکیده

Background The C-repeat-binding factors/DRE-binding factors (CBF/DREBs) comprise a key transcription factor family involved in plant stress tolerance. Yet, there is limited information about switchgrass DREB genes and their functional roles. Results In this study, four cold-inducible PvDREB1s were identified from switchgrass (Panicum virgatum), among which PvDREB1C was the one responded to cold stress later than the other three PvDREB1s. Yet, ectopic overexpression of PvDREB1C led to significantly compromised, instead of improved cold tolerance in transgenic tobacco. On the other hand, PvDREB1C was transcriptionally down-regulated in response to salt stress, but overexpression of PvDREB1C improved plant salt tolerance in transgenic tobacco. The improved salt tolerance was associated with increased K+/Na+ ratio and Ca2+ content, higher cellular osmotic potential, and activation of stress-related functional genes in the leaves of transgenic plants under salt stress. Conclusions The current results implied that PvDREB1C played opposite roles in plant cold and salt tolerance. Although DREB1s were known as positive stress regulators, particular attentions shall be paid to their potential negative regulatory role(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene

Transformation of plants using Agrabacterium rhizogenes may affect secondary metabolite production as well as morphological changes. In this study, T-DNA from Ri plasmid in A. rhizogenes carrying pRi15834-PRT35S-GUS was introduced into tobacco leaf segments to initiate development of transformed hairy roots. Plant regeneration from transgenic roots used MS medium, and plants regenerated fro...

متن کامل

Responses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress

Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...

متن کامل

Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na+ (K+)/H+ Antiporter Gene (PvNHX1)

Switchgrass (Panicum virgatum L.) has been increasingly recognized as one of the most valuable perennial bioenergy crop. To improve its biomass production, especially under salt stress, we isolated a putative vacuolar Na+ (K+)/H+ antiporter gene from switchgrass and designated as PvNHX1. Subcellular localization revealed that this protein was localized mainly on the vacuole membrane. The PvNHX1...

متن کامل

Ectopic Expression of Arabidopsis Glycosyltransferase UGT85A5 Enhances Salt Stress Tolerance in Tobacco

Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stre...

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2018